kekskurse.de/themes/nostyleplease/content/posts/test-tex.md
2024-07-29 00:39:26 +02:00

1,017 B

title date mathjax draft
Test Tex 2022-08-26T22:28:10+08:00 true true

Inline math: {{< texi \varphi >}}

Displayed math: {{< texd \begin{aligned} \varphi &\Rightarrow \psi \\ \varnothing &\rightarrow A \end{aligned} >}}

$$ R_{\mu \nu} - {1 \over 2}g_{\mu \nu},R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}

The equation $$(x_i \cdot x_j)^2$$ is called kernel function and is often written as $$k(x_i, x_j).

$$ \arg\max_\alpha \sum_j \alpha_j - \frac{1}{2} \sum_{j,k} \alpha_j, \alpha_k y_j y_k (x_j \cdot x_k)

$$ f(X) = \frac{1}{(2\pi)^{\frac{n}{2} |\Sigma|^{\frac{1}{2}}}} e^{ - \frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu)}

$$ \mu_i = \sum_{j=1}^N \frac{p_{ij} x}{n_i} \ \Sigma_i = \sum_{j=1}^N \frac{p_{ij} (x_j - \mu_i) (x_j - \mu_i)^T}{n_i}\ w_i = \frac{n_i}{N}

$$ S_i^{(t)} = \big { x_p : \big | x_p - \mu^{(t)}_i \big |^2 \le \big | x_p - \mu^{(t)}_j \big |^2 \ \forall j, 1 \le j \le k \big}

(The error above is a demo for incorrect formulas.)