kuvia2/vendor/github.com/klauspost/cpuid/cpuid.go

1505 lines
40 KiB
Go
Raw Normal View History

2022-01-14 23:09:03 +00:00
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
// Package cpuid provides information about the CPU running the current program.
//
// CPU features are detected on startup, and kept for fast access through the life of the application.
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
//
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
//
// Package home: https://github.com/klauspost/cpuid
package cpuid
import (
"math"
"strings"
)
// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
// and Processor Programming Reference (PPR)
// Vendor is a representation of a CPU vendor.
type Vendor int
const (
Other Vendor = iota
Intel
AMD
VIA
Transmeta
NSC
KVM // Kernel-based Virtual Machine
MSVM // Microsoft Hyper-V or Windows Virtual PC
VMware
XenHVM
Bhyve
Hygon
SiS
RDC
)
const (
CMOV = 1 << iota // i686 CMOV
NX // NX (No-Execute) bit
AMD3DNOW // AMD 3DNOW
AMD3DNOWEXT // AMD 3DNowExt
MMX // standard MMX
MMXEXT // SSE integer functions or AMD MMX ext
SSE // SSE functions
SSE2 // P4 SSE functions
SSE3 // Prescott SSE3 functions
SSSE3 // Conroe SSSE3 functions
SSE4 // Penryn SSE4.1 functions
SSE4A // AMD Barcelona microarchitecture SSE4a instructions
SSE42 // Nehalem SSE4.2 functions
AVX // AVX functions
AVX2 // AVX2 functions
FMA3 // Intel FMA 3
FMA4 // Bulldozer FMA4 functions
XOP // Bulldozer XOP functions
F16C // Half-precision floating-point conversion
BMI1 // Bit Manipulation Instruction Set 1
BMI2 // Bit Manipulation Instruction Set 2
TBM // AMD Trailing Bit Manipulation
LZCNT // LZCNT instruction
POPCNT // POPCNT instruction
AESNI // Advanced Encryption Standard New Instructions
CLMUL // Carry-less Multiplication
HTT // Hyperthreading (enabled)
HLE // Hardware Lock Elision
RTM // Restricted Transactional Memory
RDRAND // RDRAND instruction is available
RDSEED // RDSEED instruction is available
ADX // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
SHA // Intel SHA Extensions
AVX512F // AVX-512 Foundation
AVX512DQ // AVX-512 Doubleword and Quadword Instructions
AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
AVX512PF // AVX-512 Prefetch Instructions
AVX512ER // AVX-512 Exponential and Reciprocal Instructions
AVX512CD // AVX-512 Conflict Detection Instructions
AVX512BW // AVX-512 Byte and Word Instructions
AVX512VL // AVX-512 Vector Length Extensions
AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
AVX512VBMI2 // AVX-512 Vector Bit Manipulation Instructions, Version 2
AVX512VNNI // AVX-512 Vector Neural Network Instructions
AVX512VPOPCNTDQ // AVX-512 Vector Population Count Doubleword and Quadword
GFNI // Galois Field New Instructions
VAES // Vector AES
AVX512BITALG // AVX-512 Bit Algorithms
VPCLMULQDQ // Carry-Less Multiplication Quadword
AVX512BF16 // AVX-512 BFLOAT16 Instructions
AVX512VP2INTERSECT // AVX-512 Intersect for D/Q
MPX // Intel MPX (Memory Protection Extensions)
ERMS // Enhanced REP MOVSB/STOSB
RDTSCP // RDTSCP Instruction
CX16 // CMPXCHG16B Instruction
SGX // Software Guard Extensions
SGXLC // Software Guard Extensions Launch Control
IBPB // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
STIBP // Single Thread Indirect Branch Predictors
VMX // Virtual Machine Extensions
// Performance indicators
SSE2SLOW // SSE2 is supported, but usually not faster
SSE3SLOW // SSE3 is supported, but usually not faster
ATOM // Atom processor, some SSSE3 instructions are slower
)
var flagNames = map[Flags]string{
CMOV: "CMOV", // i686 CMOV
NX: "NX", // NX (No-Execute) bit
AMD3DNOW: "AMD3DNOW", // AMD 3DNOW
AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
MMX: "MMX", // Standard MMX
MMXEXT: "MMXEXT", // SSE integer functions or AMD MMX ext
SSE: "SSE", // SSE functions
SSE2: "SSE2", // P4 SSE2 functions
SSE3: "SSE3", // Prescott SSE3 functions
SSSE3: "SSSE3", // Conroe SSSE3 functions
SSE4: "SSE4.1", // Penryn SSE4.1 functions
SSE4A: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
SSE42: "SSE4.2", // Nehalem SSE4.2 functions
AVX: "AVX", // AVX functions
AVX2: "AVX2", // AVX functions
FMA3: "FMA3", // Intel FMA 3
FMA4: "FMA4", // Bulldozer FMA4 functions
XOP: "XOP", // Bulldozer XOP functions
F16C: "F16C", // Half-precision floating-point conversion
BMI1: "BMI1", // Bit Manipulation Instruction Set 1
BMI2: "BMI2", // Bit Manipulation Instruction Set 2
TBM: "TBM", // AMD Trailing Bit Manipulation
LZCNT: "LZCNT", // LZCNT instruction
POPCNT: "POPCNT", // POPCNT instruction
AESNI: "AESNI", // Advanced Encryption Standard New Instructions
CLMUL: "CLMUL", // Carry-less Multiplication
HTT: "HTT", // Hyperthreading (enabled)
HLE: "HLE", // Hardware Lock Elision
RTM: "RTM", // Restricted Transactional Memory
RDRAND: "RDRAND", // RDRAND instruction is available
RDSEED: "RDSEED", // RDSEED instruction is available
ADX: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
SHA: "SHA", // Intel SHA Extensions
AVX512F: "AVX512F", // AVX-512 Foundation
AVX512DQ: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
AVX512IFMA: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
AVX512PF: "AVX512PF", // AVX-512 Prefetch Instructions
AVX512ER: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
AVX512CD: "AVX512CD", // AVX-512 Conflict Detection Instructions
AVX512BW: "AVX512BW", // AVX-512 Byte and Word Instructions
AVX512VL: "AVX512VL", // AVX-512 Vector Length Extensions
AVX512VBMI: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
AVX512VBMI2: "AVX512VBMI2", // AVX-512 Vector Bit Manipulation Instructions, Version 2
AVX512VNNI: "AVX512VNNI", // AVX-512 Vector Neural Network Instructions
AVX512VPOPCNTDQ: "AVX512VPOPCNTDQ", // AVX-512 Vector Population Count Doubleword and Quadword
GFNI: "GFNI", // Galois Field New Instructions
VAES: "VAES", // Vector AES
AVX512BITALG: "AVX512BITALG", // AVX-512 Bit Algorithms
VPCLMULQDQ: "VPCLMULQDQ", // Carry-Less Multiplication Quadword
AVX512BF16: "AVX512BF16", // AVX-512 BFLOAT16 Instruction
AVX512VP2INTERSECT: "AVX512VP2INTERSECT", // AVX-512 Intersect for D/Q
MPX: "MPX", // Intel MPX (Memory Protection Extensions)
ERMS: "ERMS", // Enhanced REP MOVSB/STOSB
RDTSCP: "RDTSCP", // RDTSCP Instruction
CX16: "CX16", // CMPXCHG16B Instruction
SGX: "SGX", // Software Guard Extensions
SGXLC: "SGXLC", // Software Guard Extensions Launch Control
IBPB: "IBPB", // Indirect Branch Restricted Speculation and Indirect Branch Predictor Barrier
STIBP: "STIBP", // Single Thread Indirect Branch Predictors
VMX: "VMX", // Virtual Machine Extensions
// Performance indicators
SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
ATOM: "ATOM", // Atom processor, some SSSE3 instructions are slower
}
/* all special features for arm64 should be defined here */
const (
/* extension instructions */
FP ArmFlags = 1 << iota
ASIMD
EVTSTRM
AES
PMULL
SHA1
SHA2
CRC32
ATOMICS
FPHP
ASIMDHP
ARMCPUID
ASIMDRDM
JSCVT
FCMA
LRCPC
DCPOP
SHA3
SM3
SM4
ASIMDDP
SHA512
SVE
GPA
)
var flagNamesArm = map[ArmFlags]string{
FP: "FP", // Single-precision and double-precision floating point
ASIMD: "ASIMD", // Advanced SIMD
EVTSTRM: "EVTSTRM", // Generic timer
AES: "AES", // AES instructions
PMULL: "PMULL", // Polynomial Multiply instructions (PMULL/PMULL2)
SHA1: "SHA1", // SHA-1 instructions (SHA1C, etc)
SHA2: "SHA2", // SHA-2 instructions (SHA256H, etc)
CRC32: "CRC32", // CRC32/CRC32C instructions
ATOMICS: "ATOMICS", // Large System Extensions (LSE)
FPHP: "FPHP", // Half-precision floating point
ASIMDHP: "ASIMDHP", // Advanced SIMD half-precision floating point
ARMCPUID: "CPUID", // Some CPU ID registers readable at user-level
ASIMDRDM: "ASIMDRDM", // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
JSCVT: "JSCVT", // Javascript-style double->int convert (FJCVTZS)
FCMA: "FCMA", // Floatin point complex number addition and multiplication
LRCPC: "LRCPC", // Weaker release consistency (LDAPR, etc)
DCPOP: "DCPOP", // Data cache clean to Point of Persistence (DC CVAP)
SHA3: "SHA3", // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
SM3: "SM3", // SM3 instructions
SM4: "SM4", // SM4 instructions
ASIMDDP: "ASIMDDP", // SIMD Dot Product
SHA512: "SHA512", // SHA512 instructions
SVE: "SVE", // Scalable Vector Extension
GPA: "GPA", // Generic Pointer Authentication
}
// CPUInfo contains information about the detected system CPU.
type CPUInfo struct {
BrandName string // Brand name reported by the CPU
VendorID Vendor // Comparable CPU vendor ID
VendorString string // Raw vendor string.
Features Flags // Features of the CPU (x64)
Arm ArmFlags // Features of the CPU (arm)
PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
Family int // CPU family number
Model int // CPU model number
CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
Hz int64 // Clock speed, if known
Cache struct {
L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
L2 int // L2 Cache (per core or shared). Will be -1 if undetected
L3 int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
}
SGX SGXSupport
maxFunc uint32
maxExFunc uint32
}
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
var xgetbv func(index uint32) (eax, edx uint32)
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
// CPU contains information about the CPU as detected on startup,
// or when Detect last was called.
//
// Use this as the primary entry point to you data.
var CPU CPUInfo
func init() {
initCPU()
Detect()
}
// Detect will re-detect current CPU info.
// This will replace the content of the exported CPU variable.
//
// Unless you expect the CPU to change while you are running your program
// you should not need to call this function.
// If you call this, you must ensure that no other goroutine is accessing the
// exported CPU variable.
func Detect() {
// Set defaults
CPU.ThreadsPerCore = 1
CPU.Cache.L1I = -1
CPU.Cache.L1D = -1
CPU.Cache.L2 = -1
CPU.Cache.L3 = -1
addInfo(&CPU)
}
// Generated here: http://play.golang.org/p/BxFH2Gdc0G
// Cmov indicates support of CMOV instructions
func (c CPUInfo) Cmov() bool {
return c.Features&CMOV != 0
}
// Amd3dnow indicates support of AMD 3DNOW! instructions
func (c CPUInfo) Amd3dnow() bool {
return c.Features&AMD3DNOW != 0
}
// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
func (c CPUInfo) Amd3dnowExt() bool {
return c.Features&AMD3DNOWEXT != 0
}
// VMX indicates support of VMX
func (c CPUInfo) VMX() bool {
return c.Features&VMX != 0
}
// MMX indicates support of MMX instructions
func (c CPUInfo) MMX() bool {
return c.Features&MMX != 0
}
// MMXExt indicates support of MMXEXT instructions
// (SSE integer functions or AMD MMX ext)
func (c CPUInfo) MMXExt() bool {
return c.Features&MMXEXT != 0
}
// SSE indicates support of SSE instructions
func (c CPUInfo) SSE() bool {
return c.Features&SSE != 0
}
// SSE2 indicates support of SSE 2 instructions
func (c CPUInfo) SSE2() bool {
return c.Features&SSE2 != 0
}
// SSE3 indicates support of SSE 3 instructions
func (c CPUInfo) SSE3() bool {
return c.Features&SSE3 != 0
}
// SSSE3 indicates support of SSSE 3 instructions
func (c CPUInfo) SSSE3() bool {
return c.Features&SSSE3 != 0
}
// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
func (c CPUInfo) SSE4() bool {
return c.Features&SSE4 != 0
}
// SSE42 indicates support of SSE4.2 instructions
func (c CPUInfo) SSE42() bool {
return c.Features&SSE42 != 0
}
// AVX indicates support of AVX instructions
// and operating system support of AVX instructions
func (c CPUInfo) AVX() bool {
return c.Features&AVX != 0
}
// AVX2 indicates support of AVX2 instructions
func (c CPUInfo) AVX2() bool {
return c.Features&AVX2 != 0
}
// FMA3 indicates support of FMA3 instructions
func (c CPUInfo) FMA3() bool {
return c.Features&FMA3 != 0
}
// FMA4 indicates support of FMA4 instructions
func (c CPUInfo) FMA4() bool {
return c.Features&FMA4 != 0
}
// XOP indicates support of XOP instructions
func (c CPUInfo) XOP() bool {
return c.Features&XOP != 0
}
// F16C indicates support of F16C instructions
func (c CPUInfo) F16C() bool {
return c.Features&F16C != 0
}
// BMI1 indicates support of BMI1 instructions
func (c CPUInfo) BMI1() bool {
return c.Features&BMI1 != 0
}
// BMI2 indicates support of BMI2 instructions
func (c CPUInfo) BMI2() bool {
return c.Features&BMI2 != 0
}
// TBM indicates support of TBM instructions
// (AMD Trailing Bit Manipulation)
func (c CPUInfo) TBM() bool {
return c.Features&TBM != 0
}
// Lzcnt indicates support of LZCNT instruction
func (c CPUInfo) Lzcnt() bool {
return c.Features&LZCNT != 0
}
// Popcnt indicates support of POPCNT instruction
func (c CPUInfo) Popcnt() bool {
return c.Features&POPCNT != 0
}
// HTT indicates the processor has Hyperthreading enabled
func (c CPUInfo) HTT() bool {
return c.Features&HTT != 0
}
// SSE2Slow indicates that SSE2 may be slow on this processor
func (c CPUInfo) SSE2Slow() bool {
return c.Features&SSE2SLOW != 0
}
// SSE3Slow indicates that SSE3 may be slow on this processor
func (c CPUInfo) SSE3Slow() bool {
return c.Features&SSE3SLOW != 0
}
// AesNi indicates support of AES-NI instructions
// (Advanced Encryption Standard New Instructions)
func (c CPUInfo) AesNi() bool {
return c.Features&AESNI != 0
}
// Clmul indicates support of CLMUL instructions
// (Carry-less Multiplication)
func (c CPUInfo) Clmul() bool {
return c.Features&CLMUL != 0
}
// NX indicates support of NX (No-Execute) bit
func (c CPUInfo) NX() bool {
return c.Features&NX != 0
}
// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
func (c CPUInfo) SSE4A() bool {
return c.Features&SSE4A != 0
}
// HLE indicates support of Hardware Lock Elision
func (c CPUInfo) HLE() bool {
return c.Features&HLE != 0
}
// RTM indicates support of Restricted Transactional Memory
func (c CPUInfo) RTM() bool {
return c.Features&RTM != 0
}
// Rdrand indicates support of RDRAND instruction is available
func (c CPUInfo) Rdrand() bool {
return c.Features&RDRAND != 0
}
// Rdseed indicates support of RDSEED instruction is available
func (c CPUInfo) Rdseed() bool {
return c.Features&RDSEED != 0
}
// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
func (c CPUInfo) ADX() bool {
return c.Features&ADX != 0
}
// SHA indicates support of Intel SHA Extensions
func (c CPUInfo) SHA() bool {
return c.Features&SHA != 0
}
// AVX512F indicates support of AVX-512 Foundation
func (c CPUInfo) AVX512F() bool {
return c.Features&AVX512F != 0
}
// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
func (c CPUInfo) AVX512DQ() bool {
return c.Features&AVX512DQ != 0
}
// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
func (c CPUInfo) AVX512IFMA() bool {
return c.Features&AVX512IFMA != 0
}
// AVX512PF indicates support of AVX-512 Prefetch Instructions
func (c CPUInfo) AVX512PF() bool {
return c.Features&AVX512PF != 0
}
// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
func (c CPUInfo) AVX512ER() bool {
return c.Features&AVX512ER != 0
}
// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
func (c CPUInfo) AVX512CD() bool {
return c.Features&AVX512CD != 0
}
// AVX512BW indicates support of AVX-512 Byte and Word Instructions
func (c CPUInfo) AVX512BW() bool {
return c.Features&AVX512BW != 0
}
// AVX512VL indicates support of AVX-512 Vector Length Extensions
func (c CPUInfo) AVX512VL() bool {
return c.Features&AVX512VL != 0
}
// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
func (c CPUInfo) AVX512VBMI() bool {
return c.Features&AVX512VBMI != 0
}
// AVX512VBMI2 indicates support of AVX-512 Vector Bit Manipulation Instructions, Version 2
func (c CPUInfo) AVX512VBMI2() bool {
return c.Features&AVX512VBMI2 != 0
}
// AVX512VNNI indicates support of AVX-512 Vector Neural Network Instructions
func (c CPUInfo) AVX512VNNI() bool {
return c.Features&AVX512VNNI != 0
}
// AVX512VPOPCNTDQ indicates support of AVX-512 Vector Population Count Doubleword and Quadword
func (c CPUInfo) AVX512VPOPCNTDQ() bool {
return c.Features&AVX512VPOPCNTDQ != 0
}
// GFNI indicates support of Galois Field New Instructions
func (c CPUInfo) GFNI() bool {
return c.Features&GFNI != 0
}
// VAES indicates support of Vector AES
func (c CPUInfo) VAES() bool {
return c.Features&VAES != 0
}
// AVX512BITALG indicates support of AVX-512 Bit Algorithms
func (c CPUInfo) AVX512BITALG() bool {
return c.Features&AVX512BITALG != 0
}
// VPCLMULQDQ indicates support of Carry-Less Multiplication Quadword
func (c CPUInfo) VPCLMULQDQ() bool {
return c.Features&VPCLMULQDQ != 0
}
// AVX512BF16 indicates support of
func (c CPUInfo) AVX512BF16() bool {
return c.Features&AVX512BF16 != 0
}
// AVX512VP2INTERSECT indicates support of
func (c CPUInfo) AVX512VP2INTERSECT() bool {
return c.Features&AVX512VP2INTERSECT != 0
}
// MPX indicates support of Intel MPX (Memory Protection Extensions)
func (c CPUInfo) MPX() bool {
return c.Features&MPX != 0
}
// ERMS indicates support of Enhanced REP MOVSB/STOSB
func (c CPUInfo) ERMS() bool {
return c.Features&ERMS != 0
}
// RDTSCP Instruction is available.
func (c CPUInfo) RDTSCP() bool {
return c.Features&RDTSCP != 0
}
// CX16 indicates if CMPXCHG16B instruction is available.
func (c CPUInfo) CX16() bool {
return c.Features&CX16 != 0
}
// TSX is split into HLE (Hardware Lock Elision) and RTM (Restricted Transactional Memory) detection.
// So TSX simply checks that.
func (c CPUInfo) TSX() bool {
return c.Features&(HLE|RTM) == HLE|RTM
}
// Atom indicates an Atom processor
func (c CPUInfo) Atom() bool {
return c.Features&ATOM != 0
}
// Intel returns true if vendor is recognized as Intel
func (c CPUInfo) Intel() bool {
return c.VendorID == Intel
}
// AMD returns true if vendor is recognized as AMD
func (c CPUInfo) AMD() bool {
return c.VendorID == AMD
}
// Hygon returns true if vendor is recognized as Hygon
func (c CPUInfo) Hygon() bool {
return c.VendorID == Hygon
}
// Transmeta returns true if vendor is recognized as Transmeta
func (c CPUInfo) Transmeta() bool {
return c.VendorID == Transmeta
}
// NSC returns true if vendor is recognized as National Semiconductor
func (c CPUInfo) NSC() bool {
return c.VendorID == NSC
}
// VIA returns true if vendor is recognized as VIA
func (c CPUInfo) VIA() bool {
return c.VendorID == VIA
}
// RTCounter returns the 64-bit time-stamp counter
// Uses the RDTSCP instruction. The value 0 is returned
// if the CPU does not support the instruction.
func (c CPUInfo) RTCounter() uint64 {
if !c.RDTSCP() {
return 0
}
a, _, _, d := rdtscpAsm()
return uint64(a) | (uint64(d) << 32)
}
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
// This variable is OS dependent, but on Linux contains information
// about the current cpu/core the code is running on.
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
func (c CPUInfo) Ia32TscAux() uint32 {
if !c.RDTSCP() {
return 0
}
_, _, ecx, _ := rdtscpAsm()
return ecx
}
// LogicalCPU will return the Logical CPU the code is currently executing on.
// This is likely to change when the OS re-schedules the running thread
// to another CPU.
// If the current core cannot be detected, -1 will be returned.
func (c CPUInfo) LogicalCPU() int {
if c.maxFunc < 1 {
return -1
}
_, ebx, _, _ := cpuid(1)
return int(ebx >> 24)
}
// hertz tries to compute the clock speed of the CPU. If leaf 15 is
// supported, use it, otherwise parse the brand string. Yes, really.
func hertz(model string) int64 {
mfi := maxFunctionID()
if mfi >= 0x15 {
eax, ebx, ecx, _ := cpuid(0x15)
if eax != 0 && ebx != 0 && ecx != 0 {
return int64((int64(ecx) * int64(ebx)) / int64(eax))
}
}
// computeHz determines the official rated speed of a CPU from its brand
// string. This insanity is *actually the official documented way to do
// this according to Intel*, prior to leaf 0x15 existing. The official
// documentation only shows this working for exactly `x.xx` or `xxxx`
// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
// sizes.
hz := strings.LastIndex(model, "Hz")
if hz < 3 {
return -1
}
var multiplier int64
switch model[hz-1] {
case 'M':
multiplier = 1000 * 1000
case 'G':
multiplier = 1000 * 1000 * 1000
case 'T':
multiplier = 1000 * 1000 * 1000 * 1000
}
if multiplier == 0 {
return -1
}
freq := int64(0)
divisor := int64(0)
decimalShift := int64(1)
var i int
for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
if model[i] >= '0' && model[i] <= '9' {
freq += int64(model[i]-'0') * decimalShift
decimalShift *= 10
} else if model[i] == '.' {
if divisor != 0 {
return -1
}
divisor = decimalShift
} else {
return -1
}
}
// we didn't find a space
if i < 0 {
return -1
}
if divisor != 0 {
return (freq * multiplier) / divisor
}
return freq * multiplier
}
// VM Will return true if the cpu id indicates we are in
// a virtual machine. This is only a hint, and will very likely
// have many false negatives.
func (c CPUInfo) VM() bool {
switch c.VendorID {
case MSVM, KVM, VMware, XenHVM, Bhyve:
return true
}
return false
}
// Flags contains detected cpu features and characteristics
type Flags uint64
// ArmFlags contains detected ARM cpu features and characteristics
type ArmFlags uint64
// String returns a string representation of the detected
// CPU features.
func (f Flags) String() string {
return strings.Join(f.Strings(), ",")
}
// Strings returns an array of the detected features.
func (f Flags) Strings() []string {
r := make([]string, 0, 20)
for i := uint(0); i < 64; i++ {
key := Flags(1 << i)
val := flagNames[key]
if f&key != 0 {
r = append(r, val)
}
}
return r
}
// String returns a string representation of the detected
// CPU features.
func (f ArmFlags) String() string {
return strings.Join(f.Strings(), ",")
}
// Strings returns an array of the detected features.
func (f ArmFlags) Strings() []string {
r := make([]string, 0, 20)
for i := uint(0); i < 64; i++ {
key := ArmFlags(1 << i)
val := flagNamesArm[key]
if f&key != 0 {
r = append(r, val)
}
}
return r
}
func maxExtendedFunction() uint32 {
eax, _, _, _ := cpuid(0x80000000)
return eax
}
func maxFunctionID() uint32 {
a, _, _, _ := cpuid(0)
return a
}
func brandName() string {
if maxExtendedFunction() >= 0x80000004 {
v := make([]uint32, 0, 48)
for i := uint32(0); i < 3; i++ {
a, b, c, d := cpuid(0x80000002 + i)
v = append(v, a, b, c, d)
}
return strings.Trim(string(valAsString(v...)), " ")
}
return "unknown"
}
func threadsPerCore() int {
mfi := maxFunctionID()
vend, _ := vendorID()
if mfi < 0x4 || (vend != Intel && vend != AMD) {
return 1
}
if mfi < 0xb {
if vend != Intel {
return 1
}
_, b, _, d := cpuid(1)
if (d & (1 << 28)) != 0 {
// v will contain logical core count
v := (b >> 16) & 255
if v > 1 {
a4, _, _, _ := cpuid(4)
// physical cores
v2 := (a4 >> 26) + 1
if v2 > 0 {
return int(v) / int(v2)
}
}
}
return 1
}
_, b, _, _ := cpuidex(0xb, 0)
if b&0xffff == 0 {
return 1
}
return int(b & 0xffff)
}
func logicalCores() int {
mfi := maxFunctionID()
v, _ := vendorID()
switch v {
case Intel:
// Use this on old Intel processors
if mfi < 0xb {
if mfi < 1 {
return 0
}
// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
// that can be assigned to logical processors in a physical package.
// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
_, ebx, _, _ := cpuid(1)
logical := (ebx >> 16) & 0xff
return int(logical)
}
_, b, _, _ := cpuidex(0xb, 1)
return int(b & 0xffff)
case AMD, Hygon:
_, b, _, _ := cpuid(1)
return int((b >> 16) & 0xff)
default:
return 0
}
}
func familyModel() (int, int) {
if maxFunctionID() < 0x1 {
return 0, 0
}
eax, _, _, _ := cpuid(1)
family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
return int(family), int(model)
}
func physicalCores() int {
v, _ := vendorID()
switch v {
case Intel:
return logicalCores() / threadsPerCore()
case AMD, Hygon:
lc := logicalCores()
tpc := threadsPerCore()
if lc > 0 && tpc > 0 {
return lc / tpc
}
// The following is inaccurate on AMD EPYC 7742 64-Core Processor
if maxExtendedFunction() >= 0x80000008 {
_, _, c, _ := cpuid(0x80000008)
return int(c&0xff) + 1
}
}
return 0
}
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
var vendorMapping = map[string]Vendor{
"AMDisbetter!": AMD,
"AuthenticAMD": AMD,
"CentaurHauls": VIA,
"GenuineIntel": Intel,
"TransmetaCPU": Transmeta,
"GenuineTMx86": Transmeta,
"Geode by NSC": NSC,
"VIA VIA VIA ": VIA,
"KVMKVMKVMKVM": KVM,
"Microsoft Hv": MSVM,
"VMwareVMware": VMware,
"XenVMMXenVMM": XenHVM,
"bhyve bhyve ": Bhyve,
"HygonGenuine": Hygon,
"Vortex86 SoC": SiS,
"SiS SiS SiS ": SiS,
"RiseRiseRise": SiS,
"Genuine RDC": RDC,
}
func vendorID() (Vendor, string) {
_, b, c, d := cpuid(0)
v := string(valAsString(b, d, c))
vend, ok := vendorMapping[v]
if !ok {
return Other, v
}
return vend, v
}
func cacheLine() int {
if maxFunctionID() < 0x1 {
return 0
}
_, ebx, _, _ := cpuid(1)
cache := (ebx & 0xff00) >> 5 // cflush size
if cache == 0 && maxExtendedFunction() >= 0x80000006 {
_, _, ecx, _ := cpuid(0x80000006)
cache = ecx & 0xff // cacheline size
}
// TODO: Read from Cache and TLB Information
return int(cache)
}
func (c *CPUInfo) cacheSize() {
c.Cache.L1D = -1
c.Cache.L1I = -1
c.Cache.L2 = -1
c.Cache.L3 = -1
vendor, _ := vendorID()
switch vendor {
case Intel:
if maxFunctionID() < 4 {
return
}
for i := uint32(0); ; i++ {
eax, ebx, ecx, _ := cpuidex(4, i)
cacheType := eax & 15
if cacheType == 0 {
break
}
cacheLevel := (eax >> 5) & 7
coherency := int(ebx&0xfff) + 1
partitions := int((ebx>>12)&0x3ff) + 1
associativity := int((ebx>>22)&0x3ff) + 1
sets := int(ecx) + 1
size := associativity * partitions * coherency * sets
switch cacheLevel {
case 1:
if cacheType == 1 {
// 1 = Data Cache
c.Cache.L1D = size
} else if cacheType == 2 {
// 2 = Instruction Cache
c.Cache.L1I = size
} else {
if c.Cache.L1D < 0 {
c.Cache.L1I = size
}
if c.Cache.L1I < 0 {
c.Cache.L1I = size
}
}
case 2:
c.Cache.L2 = size
case 3:
c.Cache.L3 = size
}
}
case AMD, Hygon:
// Untested.
if maxExtendedFunction() < 0x80000005 {
return
}
_, _, ecx, edx := cpuid(0x80000005)
c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
if maxExtendedFunction() < 0x80000006 {
return
}
_, _, ecx, _ = cpuid(0x80000006)
c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
if maxExtendedFunction() < 0x8000001D {
return
}
for i := uint32(0); i < math.MaxUint32; i++ {
eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
level := (eax >> 5) & 7
cacheNumSets := ecx + 1
cacheLineSize := 1 + (ebx & 2047)
cachePhysPartitions := 1 + ((ebx >> 12) & 511)
cacheNumWays := 1 + ((ebx >> 22) & 511)
typ := eax & 15
size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
if typ == 0 {
return
}
switch level {
case 1:
switch typ {
case 1:
// Data cache
c.Cache.L1D = size
case 2:
// Inst cache
c.Cache.L1I = size
default:
if c.Cache.L1D < 0 {
c.Cache.L1I = size
}
if c.Cache.L1I < 0 {
c.Cache.L1I = size
}
}
case 2:
c.Cache.L2 = size
case 3:
c.Cache.L3 = size
}
}
}
return
}
type SGXEPCSection struct {
BaseAddress uint64
EPCSize uint64
}
type SGXSupport struct {
Available bool
LaunchControl bool
SGX1Supported bool
SGX2Supported bool
MaxEnclaveSizeNot64 int64
MaxEnclaveSize64 int64
EPCSections []SGXEPCSection
}
func hasSGX(available, lc bool) (rval SGXSupport) {
rval.Available = available
if !available {
return
}
rval.LaunchControl = lc
a, _, _, d := cpuidex(0x12, 0)
rval.SGX1Supported = a&0x01 != 0
rval.SGX2Supported = a&0x02 != 0
rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
rval.EPCSections = make([]SGXEPCSection, 0)
for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
leafType := eax & 0xf
if leafType == 0 {
// Invalid subleaf, stop iterating
break
} else if leafType == 1 {
// EPC Section subleaf
baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
rval.EPCSections = append(rval.EPCSections, section)
}
}
return
}
func support() Flags {
mfi := maxFunctionID()
vend, _ := vendorID()
if mfi < 0x1 {
return 0
}
rval := uint64(0)
_, _, c, d := cpuid(1)
if (d & (1 << 15)) != 0 {
rval |= CMOV
}
if (d & (1 << 23)) != 0 {
rval |= MMX
}
if (d & (1 << 25)) != 0 {
rval |= MMXEXT
}
if (d & (1 << 25)) != 0 {
rval |= SSE
}
if (d & (1 << 26)) != 0 {
rval |= SSE2
}
if (c & 1) != 0 {
rval |= SSE3
}
if (c & (1 << 5)) != 0 {
rval |= VMX
}
if (c & 0x00000200) != 0 {
rval |= SSSE3
}
if (c & 0x00080000) != 0 {
rval |= SSE4
}
if (c & 0x00100000) != 0 {
rval |= SSE42
}
if (c & (1 << 25)) != 0 {
rval |= AESNI
}
if (c & (1 << 1)) != 0 {
rval |= CLMUL
}
if c&(1<<23) != 0 {
rval |= POPCNT
}
if c&(1<<30) != 0 {
rval |= RDRAND
}
if c&(1<<29) != 0 {
rval |= F16C
}
if c&(1<<13) != 0 {
rval |= CX16
}
if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
if threadsPerCore() > 1 {
rval |= HTT
}
}
if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
if threadsPerCore() > 1 {
rval |= HTT
}
}
// Check XGETBV, OXSAVE and AVX bits
if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
// Check for OS support
eax, _ := xgetbv(0)
if (eax & 0x6) == 0x6 {
rval |= AVX
if (c & 0x00001000) != 0 {
rval |= FMA3
}
}
}
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
if mfi >= 7 {
_, ebx, ecx, edx := cpuidex(7, 0)
eax1, _, _, _ := cpuidex(7, 1)
if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
rval |= AVX2
}
if (ebx & 0x00000008) != 0 {
rval |= BMI1
if (ebx & 0x00000100) != 0 {
rval |= BMI2
}
}
if ebx&(1<<2) != 0 {
rval |= SGX
}
if ebx&(1<<4) != 0 {
rval |= HLE
}
if ebx&(1<<9) != 0 {
rval |= ERMS
}
if ebx&(1<<11) != 0 {
rval |= RTM
}
if ebx&(1<<14) != 0 {
rval |= MPX
}
if ebx&(1<<18) != 0 {
rval |= RDSEED
}
if ebx&(1<<19) != 0 {
rval |= ADX
}
if ebx&(1<<29) != 0 {
rval |= SHA
}
if edx&(1<<26) != 0 {
rval |= IBPB
}
if ecx&(1<<30) != 0 {
rval |= SGXLC
}
if edx&(1<<27) != 0 {
rval |= STIBP
}
// Only detect AVX-512 features if XGETBV is supported
if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
// Check for OS support
eax, _ := xgetbv(0)
// Verify that XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
// ZMM16-ZMM31 state are enabled by OS)
/// and that XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS).
if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
if ebx&(1<<16) != 0 {
rval |= AVX512F
}
if ebx&(1<<17) != 0 {
rval |= AVX512DQ
}
if ebx&(1<<21) != 0 {
rval |= AVX512IFMA
}
if ebx&(1<<26) != 0 {
rval |= AVX512PF
}
if ebx&(1<<27) != 0 {
rval |= AVX512ER
}
if ebx&(1<<28) != 0 {
rval |= AVX512CD
}
if ebx&(1<<30) != 0 {
rval |= AVX512BW
}
if ebx&(1<<31) != 0 {
rval |= AVX512VL
}
// ecx
if ecx&(1<<1) != 0 {
rval |= AVX512VBMI
}
if ecx&(1<<6) != 0 {
rval |= AVX512VBMI2
}
if ecx&(1<<8) != 0 {
rval |= GFNI
}
if ecx&(1<<9) != 0 {
rval |= VAES
}
if ecx&(1<<10) != 0 {
rval |= VPCLMULQDQ
}
if ecx&(1<<11) != 0 {
rval |= AVX512VNNI
}
if ecx&(1<<12) != 0 {
rval |= AVX512BITALG
}
if ecx&(1<<14) != 0 {
rval |= AVX512VPOPCNTDQ
}
// edx
if edx&(1<<8) != 0 {
rval |= AVX512VP2INTERSECT
}
// cpuid eax 07h,ecx=1
if eax1&(1<<5) != 0 {
rval |= AVX512BF16
}
}
}
}
if maxExtendedFunction() >= 0x80000001 {
_, _, c, d := cpuid(0x80000001)
if (c & (1 << 5)) != 0 {
rval |= LZCNT
rval |= POPCNT
}
if (d & (1 << 31)) != 0 {
rval |= AMD3DNOW
}
if (d & (1 << 30)) != 0 {
rval |= AMD3DNOWEXT
}
if (d & (1 << 23)) != 0 {
rval |= MMX
}
if (d & (1 << 22)) != 0 {
rval |= MMXEXT
}
if (c & (1 << 6)) != 0 {
rval |= SSE4A
}
if d&(1<<20) != 0 {
rval |= NX
}
if d&(1<<27) != 0 {
rval |= RDTSCP
}
/* Allow for selectively disabling SSE2 functions on AMD processors
with SSE2 support but not SSE4a. This includes Athlon64, some
Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
than SSE2 often enough to utilize this special-case flag.
AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
so that SSE2 is used unless explicitly disabled by checking
AV_CPU_FLAG_SSE2SLOW. */
if vend != Intel &&
rval&SSE2 != 0 && (c&0x00000040) == 0 {
rval |= SSE2SLOW
}
/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
* used unless the OS has AVX support. */
if (rval & AVX) != 0 {
if (c & 0x00000800) != 0 {
rval |= XOP
}
if (c & 0x00010000) != 0 {
rval |= FMA4
}
}
if vend == Intel {
family, model := familyModel()
if family == 6 && (model == 9 || model == 13 || model == 14) {
/* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
* 6/14 (core1 "yonah") theoretically support sse2, but it's
* usually slower than mmx. */
if (rval & SSE2) != 0 {
rval |= SSE2SLOW
}
if (rval & SSE3) != 0 {
rval |= SSE3SLOW
}
}
/* The Atom processor has SSSE3 support, which is useful in many cases,
* but sometimes the SSSE3 version is slower than the SSE2 equivalent
* on the Atom, but is generally faster on other processors supporting
* SSSE3. This flag allows for selectively disabling certain SSSE3
* functions on the Atom. */
if family == 6 && model == 28 {
rval |= ATOM
}
}
}
return Flags(rval)
}
func valAsString(values ...uint32) []byte {
r := make([]byte, 4*len(values))
for i, v := range values {
dst := r[i*4:]
dst[0] = byte(v & 0xff)
dst[1] = byte((v >> 8) & 0xff)
dst[2] = byte((v >> 16) & 0xff)
dst[3] = byte((v >> 24) & 0xff)
switch {
case dst[0] == 0:
return r[:i*4]
case dst[1] == 0:
return r[:i*4+1]
case dst[2] == 0:
return r[:i*4+2]
case dst[3] == 0:
return r[:i*4+3]
}
}
return r
}
// Single-precision and double-precision floating point
func (c CPUInfo) ArmFP() bool {
return c.Arm&FP != 0
}
// Advanced SIMD
func (c CPUInfo) ArmASIMD() bool {
return c.Arm&ASIMD != 0
}
// Generic timer
func (c CPUInfo) ArmEVTSTRM() bool {
return c.Arm&EVTSTRM != 0
}
// AES instructions
func (c CPUInfo) ArmAES() bool {
return c.Arm&AES != 0
}
// Polynomial Multiply instructions (PMULL/PMULL2)
func (c CPUInfo) ArmPMULL() bool {
return c.Arm&PMULL != 0
}
// SHA-1 instructions (SHA1C, etc)
func (c CPUInfo) ArmSHA1() bool {
return c.Arm&SHA1 != 0
}
// SHA-2 instructions (SHA256H, etc)
func (c CPUInfo) ArmSHA2() bool {
return c.Arm&SHA2 != 0
}
// CRC32/CRC32C instructions
func (c CPUInfo) ArmCRC32() bool {
return c.Arm&CRC32 != 0
}
// Large System Extensions (LSE)
func (c CPUInfo) ArmATOMICS() bool {
return c.Arm&ATOMICS != 0
}
// Half-precision floating point
func (c CPUInfo) ArmFPHP() bool {
return c.Arm&FPHP != 0
}
// Advanced SIMD half-precision floating point
func (c CPUInfo) ArmASIMDHP() bool {
return c.Arm&ASIMDHP != 0
}
// Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
func (c CPUInfo) ArmASIMDRDM() bool {
return c.Arm&ASIMDRDM != 0
}
// Javascript-style double->int convert (FJCVTZS)
func (c CPUInfo) ArmJSCVT() bool {
return c.Arm&JSCVT != 0
}
// Floatin point complex number addition and multiplication
func (c CPUInfo) ArmFCMA() bool {
return c.Arm&FCMA != 0
}
// Weaker release consistency (LDAPR, etc)
func (c CPUInfo) ArmLRCPC() bool {
return c.Arm&LRCPC != 0
}
// Data cache clean to Point of Persistence (DC CVAP)
func (c CPUInfo) ArmDCPOP() bool {
return c.Arm&DCPOP != 0
}
// SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
func (c CPUInfo) ArmSHA3() bool {
return c.Arm&SHA3 != 0
}
// SM3 instructions
func (c CPUInfo) ArmSM3() bool {
return c.Arm&SM3 != 0
}
// SM4 instructions
func (c CPUInfo) ArmSM4() bool {
return c.Arm&SM4 != 0
}
// SIMD Dot Product
func (c CPUInfo) ArmASIMDDP() bool {
return c.Arm&ASIMDDP != 0
}
// SHA512 instructions
func (c CPUInfo) ArmSHA512() bool {
return c.Arm&SHA512 != 0
}
// Scalable Vector Extension
func (c CPUInfo) ArmSVE() bool {
return c.Arm&SVE != 0
}
// Generic Pointer Authentication
func (c CPUInfo) ArmGPA() bool {
return c.Arm&GPA != 0
}