.. | ||
lib/websocket | ||
CHANGELOG.md | ||
LICENSE.md | ||
package.json | ||
README.md |
websocket-driver
This module provides a complete implementation of the WebSocket protocols that can be hooked up to any I/O stream. It aims to simplify things by decoupling the protocol details from the I/O layer, such that users only need to implement code to stream data in and out of it without needing to know anything about how the protocol actually works. Think of it as a complete WebSocket system with pluggable I/O.
Due to this design, you get a lot of things for free. In particular, if you hook this module up to some I/O object, it will do all of this for you:
- Select the correct server-side driver to talk to the client
- Generate and send both server- and client-side handshakes
- Recognize when the handshake phase completes and the WS protocol begins
- Negotiate subprotocol selection based on
Sec-WebSocket-Protocol
- Negotiate and use extensions via the websocket-extensions module
- Buffer sent messages until the handshake process is finished
- Deal with proxies that defer delivery of the draft-76 handshake body
- Notify you when the socket is open and closed and when messages arrive
- Recombine fragmented messages
- Dispatch text, binary, ping, pong and close frames
- Manage the socket-closing handshake process
- Automatically reply to ping frames with a matching pong
- Apply masking to messages sent by the client
This library was originally extracted from the Faye project but now aims to provide simple WebSocket support for any Node-based project.
Installation
$ npm install websocket-driver
Usage
This module provides protocol drivers that have the same interface on the server and on the client. A WebSocket driver is an object with two duplex streams attached; one for incoming/outgoing messages and one for managing the wire protocol over an I/O stream. The full API is described below.
Server-side with HTTP
A Node webserver emits a special event for 'upgrade' requests, and this is where you should handle WebSockets. You first check whether the request is a WebSocket, and if so you can create a driver and attach the request's I/O stream to it.
var http = require('http'),
websocket = require('websocket-driver');
var server = http.createServer();
server.on('upgrade', function(request, socket, body) {
if (!websocket.isWebSocket(request)) return;
var driver = websocket.http(request);
driver.io.write(body);
socket.pipe(driver.io).pipe(socket);
driver.messages.on('data', function(message) {
console.log('Got a message', message);
});
driver.start();
});
Note the line driver.io.write(body)
- you must pass the body
buffer to the
socket driver in order to make certain versions of the protocol work.
Server-side with TCP
You can also handle WebSocket connections in a bare TCP server, if you're not using an HTTP server and don't want to implement HTTP parsing yourself.
The driver will emit a connect
event when a request is received, and at this
point you can detect whether it's a WebSocket and handle it as such. Here's an
example using the Node net
module:
var net = require('net'),
websocket = require('websocket-driver');
var server = net.createServer(function(connection) {
var driver = websocket.server();
driver.on('connect', function() {
if (websocket.isWebSocket(driver)) {
driver.start();
} else {
// handle other HTTP requests
}
});
driver.on('close', function() { connection.end() });
connection.on('error', function() {});
connection.pipe(driver.io).pipe(connection);
driver.messages.pipe(driver.messages);
});
server.listen(4180);
In the connect
event, the driver gains several properties to describe the
request, similar to a Node request object, such as method
, url
and
headers
. However you should remember it's not a real request object; you
cannot write data to it, it only tells you what request data we parsed from the
input.
If the request has a body, it will be in the driver.body
buffer, but only as
much of the body as has been piped into the driver when the connect
event
fires.
Client-side
Similarly, to implement a WebSocket client you just need to make a driver by passing in a URL. After this you use the driver API as described below to process incoming data and send outgoing data.
var net = require('net'),
websocket = require('websocket-driver');
var driver = websocket.client('ws://www.example.com/socket'),
tcp = net.connect(80, 'www.example.com');
tcp.pipe(driver.io).pipe(tcp);
tcp.on('connect', function() {
driver.start();
});
driver.messages.on('data', function(message) {
console.log('Got a message', message);
});
Client drivers have two additional properties for reading the HTTP data that was sent back by the server:
driver.statusCode
- the integer value of the HTTP status codedriver.headers
- an object containing the response headers
HTTP Proxies
The client driver supports connections via HTTP proxies using the CONNECT
method. Instead of sending the WebSocket handshake immediately, it will send a
CONNECT
request, wait for a 200
response, and then proceed as normal.
To use this feature, call driver.proxy(url)
where url
is the origin of the
proxy, including a username and password if required. This produces a duplex
stream that you should pipe in and out of your TCP connection to the proxy
server. When the proxy emits connect
, you can then pipe driver.io
to your
TCP stream and call driver.start()
.
var net = require('net'),
websocket = require('websocket-driver');
var driver = websocket.client('ws://www.example.com/socket'),
proxy = driver.proxy('http://username:password@proxy.example.com'),
tcp = net.connect(80, 'proxy.example.com');
tcp.pipe(proxy).pipe(tcp, { end: false });
tcp.on('connect', function() {
proxy.start();
});
proxy.on('connect', function() {
driver.io.pipe(tcp).pipe(driver.io);
driver.start();
});
driver.messages.on('data', function(message) {
console.log('Got a message', message);
});
The proxy's connect
event is also where you should perform a TLS handshake on
your TCP stream, if you are connecting to a wss:
endpoint.
In the event that proxy connection fails, proxy
will emit an error
. You can
inspect the proxy's response via proxy.statusCode
and proxy.headers
.
proxy.on('error', function(error) {
console.error(error.message);
console.log(proxy.statusCode);
console.log(proxy.headers);
});
Before calling proxy.start()
you can set custom headers using
proxy.setHeader()
:
proxy.setHeader('User-Agent', 'node');
proxy.start();
Driver API
Drivers are created using one of the following methods:
driver = websocket.http(request, options)
driver = websocket.server(options)
driver = websocket.client(url, options)
The http
method returns a driver chosen using the headers from a Node HTTP
request object. The server
method returns a driver that will parse an HTTP
request and then decide which driver to use for it using the http
method. The
client
method always returns a driver for the RFC version of the protocol with
masking enabled on outgoing frames.
The options
argument is optional, and is an object. It may contain the
following fields:
maxLength
- the maximum allowed size of incoming message frames, in bytes. The default value is2^26 - 1
, or 1 byte short of 64 MiB.protocols
- an array of strings representing acceptable subprotocols for use over the socket. The driver will negotiate one of these to use via theSec-WebSocket-Protocol
header if supported by the other peer.
A driver has two duplex streams attached to it:
driver.io
- this stream should be attached to an I/O socket like a TCP stream. Pipe incoming TCP chunks to this stream for them to be parsed, and pipe this stream back into TCP to send outgoing frames.driver.messages
- this stream emits messages received over the WebSocket. Writing to it sends messages to the other peer by emitting frames via thedriver.io
stream.
All drivers respond to the following API methods, but some of them are no-ops depending on whether the client supports the behaviour.
Note that most of these methods are commands: if they produce data that should
be sent over the socket, they will give this to you by emitting data
events on
the driver.io
stream.
driver.on('open', function(event) {})
Adds a callback to execute when the socket becomes open.
driver.on('message', function(event) {})
Adds a callback to execute when a message is received. event
will have a
data
attribute containing either a string in the case of a text message or a
Buffer
in the case of a binary message.
You can also listen for messages using the driver.messages.on('data')
event,
which emits strings for text messages and buffers for binary messages.
driver.on('error', function(event) {})
Adds a callback to execute when a protocol error occurs due to the other peer
sending an invalid byte sequence. event
will have a message
attribute
describing the error.
driver.on('close', function(event) {})
Adds a callback to execute when the socket becomes closed. The event
object
has code
and reason
attributes.
driver.on('ping', function(event) {})
Adds a callback block to execute when a ping is received. You do not need to handle this by sending a pong frame yourself; the driver handles this for you.
driver.on('pong', function(event) {})
Adds a callback block to execute when a pong is received. If this was in
response to a ping you sent, you can also handle this event via the
driver.ping(message, function() { ... })
callback.
driver.addExtension(extension)
Registers a protocol extension whose operation will be negotiated via the
Sec-WebSocket-Extensions
header. extension
is any extension compatible with
the websocket-extensions
framework.
driver.setHeader(name, value)
Sets a custom header to be sent as part of the handshake response, either from
the server or from the client. Must be called before start()
, since this is
when the headers are serialized and sent.
driver.start()
Initiates the protocol by sending the handshake - either the response for a
server-side driver or the request for a client-side one. This should be the
first method you invoke. Returns true
if and only if a handshake was sent.
driver.parse(string)
Takes a string and parses it, potentially resulting in message events being
emitted (see on('message')
above) or in data being sent to driver.io
. You
should send all data you receive via I/O to this method by piping a stream into
driver.io
.
driver.text(string)
Sends a text message over the socket. If the socket handshake is not yet
complete, the message will be queued until it is. Returns true
if the message
was sent or queued, and false
if the socket can no longer send messages.
This method is equivalent to driver.messages.write(string)
.
driver.binary(buffer)
Takes a Buffer
and sends it as a binary message. Will queue and return true
or false
the same way as the text
method. It will also return false
if the
driver does not support binary messages.
This method is equivalent to driver.messages.write(buffer)
.
driver.ping(string = '', function() {})
Sends a ping frame over the socket, queueing it if necessary. string
and the
callback are both optional. If a callback is given, it will be invoked when the
socket receives a pong frame whose content matches string
. Returns false
if
frames can no longer be sent, or if the driver does not support ping/pong.
driver.pong(string = '')
Sends a pong frame over the socket, queueing it if necessary. string
is
optional. Returns false
if frames can no longer be sent, or if the driver does
not support ping/pong.
You don't need to call this when a ping frame is received; pings are replied to automatically by the driver. This method is for sending unsolicited pongs.
driver.close()
Initiates the closing handshake if the socket is still open. For drivers with no
closing handshake, this will result in the immediate execution of the
on('close')
driver. For drivers with a closing handshake, this sends a closing
frame and emit('close')
will execute when a response is received or a protocol
error occurs.
driver.version
Returns the WebSocket version in use as a string. Will either be hixie-75
,
hixie-76
or hybi-$version
.
driver.protocol
Returns a string containing the selected subprotocol, if any was agreed upon
using the Sec-WebSocket-Protocol
mechanism. This value becomes available after
emit('open')
has fired.