86 lines
2 KiB
Go
86 lines
2 KiB
Go
package smetrics
|
|
|
|
import (
|
|
"math"
|
|
)
|
|
|
|
// The Jaro distance. The result is 1 for equal strings, and 0 for completely different strings.
|
|
func Jaro(a, b string) float64 {
|
|
// If both strings are zero-length, they are completely equal,
|
|
// therefore return 1.
|
|
if len(a) == 0 && len(b) == 0 {
|
|
return 1
|
|
}
|
|
|
|
// If one string is zero-length, strings are completely different,
|
|
// therefore return 0.
|
|
if len(a) == 0 || len(b) == 0 {
|
|
return 0
|
|
}
|
|
|
|
// Define the necessary variables for the algorithm.
|
|
la := float64(len(a))
|
|
lb := float64(len(b))
|
|
matchRange := int(math.Max(0, math.Floor(math.Max(la, lb)/2.0)-1))
|
|
matchesA := make([]bool, len(a))
|
|
matchesB := make([]bool, len(b))
|
|
var matches float64 = 0
|
|
|
|
// Step 1: Matches
|
|
// Loop through each character of the first string,
|
|
// looking for a matching character in the second string.
|
|
for i := 0; i < len(a); i++ {
|
|
start := int(math.Max(0, float64(i-matchRange)))
|
|
end := int(math.Min(lb-1, float64(i+matchRange)))
|
|
|
|
for j := start; j <= end; j++ {
|
|
if matchesB[j] {
|
|
continue
|
|
}
|
|
|
|
if a[i] == b[j] {
|
|
matchesA[i] = true
|
|
matchesB[j] = true
|
|
matches++
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there are no matches, strings are completely different,
|
|
// therefore return 0.
|
|
if matches == 0 {
|
|
return 0
|
|
}
|
|
|
|
// Step 2: Transpositions
|
|
// Loop through the matches' arrays, looking for
|
|
// unaligned matches. Count the number of unaligned matches.
|
|
unaligned := 0
|
|
j := 0
|
|
for i := 0; i < len(a); i++ {
|
|
if !matchesA[i] {
|
|
continue
|
|
}
|
|
|
|
for !matchesB[j] {
|
|
j++
|
|
}
|
|
|
|
if a[i] != b[j] {
|
|
unaligned++
|
|
}
|
|
|
|
j++
|
|
}
|
|
|
|
// The number of unaligned matches divided by two, is the number of _transpositions_.
|
|
transpositions := math.Floor(float64(unaligned / 2))
|
|
|
|
// Jaro distance is the average between these three numbers:
|
|
// 1. matches / length of string A
|
|
// 2. matches / length of string B
|
|
// 3. (matches - transpositions/matches)
|
|
// So, all that divided by three is the final result.
|
|
return ((matches / la) + (matches / lb) + ((matches - transpositions) / matches)) / 3.0
|
|
}
|